主讲人:叶科 副研究员
时间:2025年3月26日10:30—11:00 地点:数学院南楼N204
【报告摘要】In this talk, we present the quadratic models of Grassmannians, which realize a Grassmannian as a real affine variety. We will discuss computational properties of Grassmannians from three aspects:
1) We obtain the degree formula of Grassmannians as affine varieties. In particular, our formula resolves the Devriendt--Friedman--Sturmfels conjecture.
2) We consider the Euclidean distance degree (ED degree) of Grassmannians as affine varieties.
3) We prove that quadratic optimization over a Grassmannian is NP-hard.
Since degree, ED degree, and computational complexity measure different aspects of computational difficulty, an important implication of our results is that computations over Grassmannians are challenging in multiple ways.
【报告人简介】叶科,中国科学院数学与系统科学研究院副研究员,研究兴趣主要集中在代数与几何方法在计算复杂度理论、(多重)线性代数、数值计算以及优化问题中的应用。研究工作分别解决了T. Y. Lam、B. Sturmfels和D. Kazhdan提出的猜想,并回答了Y. Saad的公开问题。相关学术成果发表于Adv. Math., Found. Comut. Math., Math. Program.等国际知名期刊。目前担任《SIAM Journal on Applied Algebra and Geometry》编委。曾入选海外高层次人才引进计划(青年项目)。获得吴文俊计算机数学青年学者奖、华为技术合作成果转化二等奖、优秀合作项目奖。指导的学生工作获得国际符号与代数计算会议(ISSAC)最佳学生论文奖。