Motion Polynomials Admitting a Factorization

主讲人:李子佳 副研究员
时间:2025年4月9日10:30—11:00   地点:数学院南楼N204

【报告摘要】 Motion polynomials (polynomials over the dual quaternions with nonzero real norm) describe rational motions. We present a necessary and sufficient condition for reduced bounded motion polynomials to admit factorizations into monic linear factors, and we give an algorithm to compute them. We can use those linear factors to construct mechanisms because the factorization corresponds to the decomposition of the rational motion into simple rotations or translations.

 

【报告人简介】李子佳,中国科学院数学与系统科学研究院副研究员,研究方向是计算代数几何及其在机构学的应用,主要致力于用代数几何的工具来解释可动机构的机理并应用于设计开发新机构。研究工作关注运动多项式因式分解的充分必要条件,相关学术成果发表在Found. Comput. Math.,Math. Comp.,J. Symb. Comput. SIAM J. Appl. Algebra Geom等国际重要计算与应用数学杂志和Mech. Mach. Theory, T-RO等国际重要机器人机构学杂志上,曾入选中国科学院青年引才计划。